[2]陈泽西.基于新能源发电功率预测的储能系统优化配置研究[D]. 华北电力大学(北京), 2023.CHEN Zexi. Research on optimal configuration of energy storage system based on new energy power generation power prediction[D]. North China Electric Power University (Beijing), 2023. [4]黎静华,骆怡辰,杨舒惠,等.可再生能源电力不确定性预测方法综述[J]. 高电压技术,2021,47(04):1144-1157. LI Jinghua,LUO Yichen,YANG Shuhui, et al. Review of renewable energy power uncertainty prediction methods [J]. High Voltage Technology, 2021, 47(04): 1144-1157.[5]MUGHAL S N, SOOD Y R, JARIAL R K. Design and optimization of photovoltaic system with a week ahead power forecast using autoregressive artificial neural networks[J]. Materials Today: Proceedings, 2022, 52: 834-841.[6]周孝信,鲁宗相,刘应梅,等.中国未来电网的发展模式和关键技术[J].中国电机工程学报,2014,34(29):4999-5008.ZHOU X X, LU Z X, LIU Y M, et al. Development model and key technologies of China’s future power grid[J]. Chinese Journal of Electrical Engineering, 2014, 34(29): 4999-5008.[8]崔文康.人工智能驱动的新能源发电功率非参数概率预测研究[D].浙江大学,2023.CUI Wenkang. Research on non-parametric probability prediction of new energy power generation driven by artificial intelligence[D]. Zhejiang University, 2023.[9]张俊蔚.基于物理模型的光伏电站输出功率预测[J].甘肃水利水电技术,2015,51(01):46-49.ZHANG Junwei. Photovoltaic power plant output power prediction based on physical model[J]. Gansu Water Conservancy and Hydropower Technology, 2015, 51(01): 46-49.[11]WAN C, ZHAO J, SONG Y, et al. Photovoltaic and solar power forecasting for smart grid energy management[J]. CSEE Journal of power and energy systems, 2015, 1(4): 38-46.[12]BROWN B G, KATZ R W, MURPHY A H. Time series models to simulate and forecast wind speed and wind power[J]. Journal of Applied Meteorology and Climatology, 1984, 23(8): 1184-1195.[13]宗路熠.光伏出力预测方法与发展趋势[J].自动化应用,2023, 64(20):144-146.ZONG Luyu. Photovoltaic output prediction method and development trend[J]. Automation Application, 2023, 64(20): 144-146.[14]SERTTAS F, HOCAOGLU F O, AKARSLAN E. Short term solar power generation forecasting: A novel approach[C]//2018 International Conference on Photovoltaic Science and Technologies (PVCon). IEEE, 2018: 1-4.[15]王登海,安玥馨,廖晨博,等.基于CNN-LSTM混合神经网络的光伏发电量预测方法研究[J].西安石油大学学报(自然科学版),2024,39(01):129-134.[16]袁建华,谢斌斌,何宝林,等.基于DTW-VMD-PSO-BP的光伏发电功率短期预测方法[J]. 太阳能学报, 2022, 43(8): 58-66.YUAN J H, XIE B B, HE B L, et al. Short-term prediction method of photovoltaic power generation based on DTW-VMD-PSO-BP[J]. Journal of Solar Energy, 2022, 43(8): 58-66.[17]陈 龙,张 菁,张昊立,等.基于VMD和射箭算法优化改进ELM的短期光伏发电预测[J].太阳能学报,2023,44(10):135-141.CHEN Long, ZHANG Jing, ZHANG Haoli, et al. Short-term photovoltaic power generation forecast based on optimized and improved ELM based on VMD and archery algorithm [J]. Journal of Solar Energy, 2023, 44(10): 135-141.[18]张 程,林谷青,匡 宇.基于MEEMD-QUATRE-BILSTM的短期光伏出力区间预测[J].太阳能学报,2023,44(11):40-54.ZHANG Cheng, LIN Guqing, KUANG Yu. Short-term photovoltaic output interval prediction based on MEEMD-QUATRE-BILSTM[J]. Journal of Solar Energy, 2023, 44(11): 40-54.[19]董 勃,罗森林.小数据集文本语义相似性分析模型的优化与应用[J].信息安全研究,2023,9(10):980-985.DONG Bo, LUO Senlin. Optimization and application of text semantic similarity analysis model for small data sets[J]. Information Security Research, 2023, 9(10): 980-985.[20]何 威,苏中元,史金林,等.基于双重注意力GRU与相似修正的光伏功率预测[J].太阳能学报,2024,45(03):480-487.HE Wei, SU Zhongyuan, SHI Jinlin, et al. Photovoltaic power prediction based on dual attention GRU and similarity correction[J]. Journal of Solar Energy, 2024, 45(03): 480-487.[21]李 争,张 杰,徐若思,等.基于相似日聚类和PCC-VMD-SSA-KELM模型的短期光伏功率预测[J].太阳能学报,2024,45(02):460-468.LI Zheng, ZHANG Jie, XU Ruosi, et al. Short-term photovoltaic power prediction based on similar day clustering and PCC-VMD-SSA-KELM model [J]. Journal of Solar Energy, 2024, 45(02): 460-468. |